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Abstract

During the design of monitoring systems for aircraft engines it is common to include algorith-
mic provisions to reduce the anticipated noise content of the input signals by applying some sort of
filters at a suitable stage of processing. A tacit assumption is often made that such filtering will make
the system more robust with respect to noise or even data errors.

The elimination of uncorrelated noise in a signal emanating from a physical process may have a
large effect on the predictability of this signal, thus enabling high data compression rates in a dedi-
cated or embedded flight data recording system. However, little is known about the influence of
filtering the input into engine fatigue life usage calculations on the outcome of various models used
in present monitoring systems.

A simplified, yet realistic mathematical model is used to describe the thermal response, stress
and fatigue behavior of fracture critical parts in an aero engine compressor. Using this model, the
consequences of applying digital recursive filters to recorded engine data are investigated. The
analysis concentrates on statistical methods to assess the accuracy. From the results some guidelines
are derived that allow a more systematic selection of filter parameters when a predefined accuracy of
the fatigue life usage results is required.
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Figure 1: Spool speed signal of a military jet engine for one flight

Introduction
Existing engine monitoring systems for military aircraft include methods to calculate the fa-

tigue life usage of rotating engine components known to have the potential to destroy the aircraft or
to cause at least high financial loss in case of an in-flight failure. At first sight, on-board fatigue life
usage monitoring (LUM) seems to have reached maturity over the years and will be applied to the
engines of the Tiger helicopter and of the Typhoon Eurofighter.

These systems use on-board processing based on a few (less than 10) engine or aircraft signals
to calculate the life consumption for all fracture critical parts of the engines. Figure 1 shows a typical
spool speed signal of the HP spool speed of a military engine for one flight. The calculation uses
mathematical models of the thermal, mechanical and material properties of the engine and its com-
ponents. A simplified example of such a model will be presented later in this paper.

The algorithms are based on existing knowledge of failure mechanisms and take into account
the  experience (e.g. test results, inspection findings) available at the time when the on-board soft-
ware is specified. Although some flexibility can be built into the monitoring software (e.g. by using
loadable parameter sets), the software is not able to cope with newly detected damage mechanisms
or with unanticipated configuration changes of the engine. It is therefore necessary to perform
regular updates of the on-board software. Even if the system  architecture is carefully designed, a
fleetwide software update together with the accompanying adaptations in the logistic system is at
least very expensive and carries the risk of introducing inconsistencies into the fatigue life usage
data [BP97, PR95].

The most challenging situation for existing LUM systems occurs, if damage (e.g. cracks) is
detected during inspection of components with long in-service times without any proper coverage
of the corresponding areas in the on-board LUM algorithms. Current practice is to use statistical
correlations between the computed damage at monitored areas and model calculations of loads at
the newly detected area to get an idea, which parts would have be to removed from service or to be
inspected. The inevitable consequence is a considerable uncertainty and loss of usable life for the
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Figure 2: Histogram of spool speed
values for one flight

Figure 3: Histogram of spool speed delta values
for one flight

components in question. The only way out of
this dilemma would be the availability of a com-
plete running history of the part, including re-
cordings of all flight data necessary to recal-
culate the load history and life consumption at
newly detected critical areas. None of the ex-
isting systems currently provides such long
time history data.

Aviation recorders, either in the form of
crash protected devices for accident investi-
gations or as very large capacity airborne quick
access data recorders for maintenance support
are now profiting from the availability of stor-
age media (e.g. solid state memory devices)
with high reliability and enormous capacity.
Many of the existing tape based devices are
currently being replaced by solid state FDRs,
both in the military [SS95] and in the civil trans-
port [Gro99] environment. However, the di-
rection of development seems to be aiming
either at an ever increasing number of param-
eters or at higher sampling rates, which are
needed for incident and accident investigations
[HK99]. In contrast LUM applications only
need a few parameters with relatively low sam-
pling rates.

Long Term Recording
of Engine Data

The monitoring function of the RB199 engines, which is part of the German Tornado OLMOS
system [BP97], uses a data rate of 2Hz and only 8 input parameters plus some logical signals. All
those data are of course available on the general purpose FDR [SS95], which only stores a few
hours of data, however. No regular readout of those data is performed, unless other problems re-
quire an analysis of the FDR data, and it would be completely impractical to require a data readout
of all FDR parameters just to get the engine data.

Although some previous work on flight data compression has been reported [SM89], no reli-
able figures were available on the information content of the signals entering a LUM calculation.
The current practice in most existing recording systems is to use some sort of  Run Length Encoding
(RLE), which is known to be rather sensitive to small disturbances in the signals.

Some preliminary investigations were performed to get an idea on the benefits of various data
compression methods, if applied to the signals needed for a LUM calculation. It turned out that
different strategies have to be applied to the different signal types and that it is absolutely necessary
to gain detailed insight in the signal properties to design a recording strategy yielding practicable
data volumes when the full running history of an engine shall be stored. A strategy using delta coding
together with statistical coders was found to be most promising. Those techniques depend heavily
on the statistical properties of a signal. Examples for a spool speed signal are shown in Figs. 2 and 3.

The determination of the power density spectrum of the autocorrelation of a signal, which is
the most important tool to detect noise,  needs some precautions to produce meaningful results
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Figure 4: Power density spectrum of spool speed autocorrelation
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Figure 5: ∼ƒ−β behavior of spool speed signal

Digital Lowpass Filters

Systems that smooth input signals, thus removing noise are usually called filters. They can be
treated as a black box, that modifies a discrete input signal x into an output signal y. Certain systems
(discrete, linear, time-invariant, continuous) are fully characterized by the so-called impulse response.
That is the output of the system, if a delta impulse (=1 for time step n=0, 0 otherwise) is supplied as
input. An arbitrary input signal x(n) will then produce the output y(n), where y(n) is the convolution
of the impulse response with x(n).

For the present investigation only the special case of Butterworth filters was considered. These
filters are easily implemented in the time domain and have a smooth amplitude response. To speak of
amplitudes we have to look at the representation of the impulse response in the frequency domain.
The convolution theorem states, that the Fourier transform of the output signal is equal to the
product of the Fourier transforms of the input signal and that of the impulse response. If represented
in the usual way as complex number, the convolution theorem yields the result, that the magnitude of
the Fourier transform of the output signal is equal to the product of the Fourier transforms of the
input signal and of the system's impulse response.

For Butterworth filters this magnitude of the Fourier transform of the impulse response is a
very smooth function of frequency (Fig.6). This amplitude response approaches that of an ideal
filter, if the filter order increases. An ideal low pass filter suppresses frequencies outside of its pass

[Smi97]. The method is usually
applied to periodic signals,
where distinct frequencies with
some physical meaning (reso-
nances) are sought for. If applied
to other signal types, adapted
analysis methods are required. A
computer program “SPPOWR”
in [SD93] was used to produce
the spectrum data shown in this
presentation. The program com-
putes the average periodogram
of a real data sequence by aver-
aging the Fourier transforms of
overlapping segments in the
data. A typical segment length
used, that has to be a power of

2, was 128. To mitigate boundary effects, a
Hanning data window is applied to the single seg-
ments.

Figures 4 and 5 reveal a signal behavior that
is found in many systems with interacting pro-
cesses with different time scales. An enormous
literature exists on this so called 1/f  noise [Ber94]
            An understanding of the signal proper-
ties is necessary to find preprocessing techniques
with minimum influence on the information con-
tent. Digital filters are the most powerful tools to
accomplish certain intended signal modifications
[OS89, PB87].
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Figure 6: Amplitude response of 4 digital Butterworth filters with nearly identical cutoff frequency

Figure 7: Group delay (negative phase derivative) for the 4 filters of Figure 6

band completely and has no influence on frequencies inside its pass band. Unfortunately such filters
can not be obtained with practicable effort and one has to stay with approximations of the desired
ideal behavior. Butterworth filters put emphasis on the quality of the amplitude response at the
expense of the phase response. A linear phase response is tantamount to the filter exerting a simple
time delay on the signal. Since both goals are interrelated, one has to accept a nonlinear phase
response, that means the frequency contents of the signals are variably delayed (Fig. 7). A ripple in
the amplitude response, which is quite common for linear-phase filters, would induce the risk of
creating spurious new extreme values in the output. As a consequence new cycles without physical
meaning could be created, thus distorting subsequent calculations of fatigue damage.

A short sketch of how to design and implement digital Butterworth filters follows. The avail-
able literature concentrates on analog Butterworth filters and on the Fourier transform of their
impulse response. To design a digital Butterworth filter from the given Fourier transform of its
analog impulse response, the following steps have to be performed:

1) Determine the analog impulse response
2) Compute the Laplace transform of the analog impulse response
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Figure 8: Correspondence between group delay at f=0
and cutoff frequency for Butterworth filter family

3) Adjust the frequency representation with a bilinear transform
4) Compute the Z-transform of the digital impulse response
5) Compute the Fourier transform of the digital impulse response.
 The result is the digital impulse response. (See example in Fig. 9). Applying the outlined

procedure, a digital Butterworth filter is determined by its order N (the number of samples used to
compute the actual output), the sampling interval of the discrete input signal T and the cutoff fre-
quency ω

g
. By selection of these three parameters the filter is fully determined.

1) Poles of analog filter: For   let  

2) Determine coefficients b
k
 for  :  

3) Determine coefficients ak for  by expanding the expression: Let

             arbitrary:    .

4) Now let  be a discrete input signal, then the filtered output signal
     is obtained by: Let 

.

Input and output shall be 0 for negative n:   One

remark on the cutoff frequency ωg.
: The magnitude of the Fourier transform at the point:

 is  for Butterworth filters of arbitrary order. At the corresponding frequency

(transition or cutoff frequency)  the amplitude has a turning point. Higher frequencies will be sup-
pressed increasingly. The phase response is rather nonlinear in this transition area, with an extremum
of the group delay (derivative of the phase response) near the cutoff frequency. (Figure 7).

For our investigation 25 Butterworth filters were used with a maximum order of 5. This choice
was based on the idea to avoid longer lags between data acquisition and data storage, which be-

comes difficult to handle at en-
gine shut down. Besides from
that, the implementation of
higher order filters poses increas-
ing difficulties in accuracy and
stability. The cutoff frequencies
were chosen to match the val-
ues 1.0, 2.0, 3.0, 4.0 and 5.0 for
the phase derivative (group de-
lay) at zero frequency. This  re-
sults in a linearly varying output
signal delayed by whole mul-
tiples of the sampling interval for
a  linearly varying input  signal
after the overshoot oscillations
(only present for filter orders
greater than 1) have decayed. A
derivation is given in [Gra00].
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Figure 9: Impulse response of 4 Butterworth filters with equal cutoff frequency

Figure 10: Step response of 4 Butterworth filters with equal cutoff frequency

The correspondence
between group delay at
zero frequency and the
cutoff frequency is shown
in Fig.8. The usual fre-
quency scaling with the
Nyquist frequency set to
0.5 is used in this and all
figures with a frequency
abscissa. For convenience
the 25 investigated filters
are addressed by their fil-
ter order and their delay
time for linear input in the
following discussion. Fil-
ter (5,2) means order 5
and 2 time steps delay at
f=0. The conversion into
cutoff frequency can be
done using Figure 8. For
example, the filter (5,2)
has an approximate cutoff
frequency of 0.22. In the
Figures 9 and 10 impulse
and step responses are
shown for the filters (2,2),
(3,3), (4,4) and (5,5),
which all have a cutoff
frequency near 0.1. This
makes them suitable can-
didates for the demonstra-
tion of the effects of filter
order.

Overshoot is only
present for  filter orders
>1, and its magnitude in-
creases with increasing

filter order. Order-1 filters approach the input signal in an asymptotic manner without overshoot.
The overshoot properties of filters are best visible in their step response. (Fig.10). The overshoot
properties will turn out to be crucial for the accuracy of computed fatigue life usage from spool
speed (N) signals. On the other hand, the impulse response is immediately linked with noise reduc-
tion. A single spike in an otherwise smooth signal is reduced by the amount shown in Figure 9. E.g.
the filter (2,2) will transform a single noise pulse into an output with 30% the height of the raw pulse
with a subsequently decaying oscillation.

To give an idea on the coefficients of the Butterworth filters, 2 formulas are given:
The output y(n) of filter (2,2) at time step n is determined by:

y(n) = ( x(n) + 2 x(n-1) + x(n-2) + 14 y(n-1) - 5 y(n-2) ) / 13.
The corresponding formula for filter (4,4) is:  y(n) =
    0.0049061458 ( x(n) + x(n-4) ) + 0.019624583 ( x(n-1) + x(n-3) ) + 0.029436875 x(n-2)
 + 2.3615368686 y(n-1)  - 2.301335 y(n-2) + 1.0470692 y(n-3)  - 0.18576948 y(n-4).
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Figure 11: Application of Butterworth filter (2,2) on spool speed signal (corrected delay)

Figure 12: Application of Butterworth filter (4,4) on spool speed signal (corrected delay)

Filter Application Examples
In this chapter results of the application of some of the proposed filters to measured engine

signals are shown, together with the influence of filtering on the statistical properties of the modified
signals. For the intended compressed coding, which capitalizes on statistical predictability, the ad-
vantages of applying filters will become visible in an example with heavy noise content (Figure 13).

As visible in Figs. 4  and 5, properly acquired spool speed (N) signals usually have a negligible
noise content. That means that nearly every filter will have an influence on the nonrandom informa-
tion contained in the signal. This may have further consequences, when the signal is used as input in
a subsequent fatigue life usage calculation. Figures 11 and 12 demonstrate the effects of filter order
on filtered signals, if the Butterworth filters (2,2) and (4,4) are applied to a high pressure spool

speed  signal of a mili-
tary jet engine,
sampled at 2Hz. It is
clearly visible that the
filter (2,2) underesti-
mates most peaks,
whereas filter (4,4) fol-
lows the input signal
more closely and pro-
duces an overshoot at
the absolute maximum
at Time≈56s. In both
figures the time delay
for f=0 is used to syn-
chronize the output
with the raw input.
The same method
would have to be ap-
plied when recovering
data from a recording
system that applies fil-
ters. Although theo-
retically only valid for
slowly changing sig-
nals − note the strong
frequency dependence
in Fig.7 −  shifting the
filtered signal by an in-
teger amount is com-
putationally very
simple and in most
cases sufficiently accu-
rate to bring into phase
signals that have been
processed by  filters of
different delay.

The second ex-
ample deals with a tur-
bine blade temperature
(TBT) signal mea-
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Figure 13: Turbine blade temperature raw signal with high noise content

Figure 14: Turbine blade temperature signal after application of filter (2,2)
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Figure 15: Turbine blade temperature signal with periodic noise,
result of application of  filter (4,4)

Figure 16: Influence of filter order on stop band attenuation

sured by an optical pyrometer.
The main reason to measure this
signal is for the engine control
system, where it is used to pre-
vent the engine from running to
hot. Besides from that, the TBT
signal is the most important pa-
rameter for monitoring creep life
consumption of turbine blades.
For some blade types creep may
be the life limiting factor. Creep
is usually only present, if high
spool speeds and very high blade
temperatures occur simulta-
neously. The metal temperature
calculation in the creep monitor-
ing algorithm usually takes the

measured TBT as input to some heat conduction equation. The temperature at the blade cross
section considered to be at the highest creep risk therefore follows the TBT with some time delay
and considerably smoothed.

The pyrometer output is fed into a linearizing amplifier, where it is converted into a voltage
signal with sufficient signal strength to be input into a standard A/D converter for further processing
or recording. Due to the ~T4 law of heat radiation no usable output is produced by the amplifier at
idle or moderate power setting of the engine. This is acceptable for the engine control system,
because only high  values will have the chance to activate the limiter function. Therefore the function
checks performed by the maintenance personnel often ignore the behavior of this signal at low
power settings. The signal shown in Figure 13 has very high noise content, especially in the men-
tioned low resolution range. If such a signal is fed into a recording system that tries to reduce
storage space using statistical prediction, the compression efficiency will be rather poor (it would, of
course, be poor with any other compression technique, e.g. RLE, too).

A closer look at the signal details in Figure 15 reveals that there is a nearly periodic background
noise of considerable amplitude superimposed to that part of the signal following the power setting
of the engine. Without going into details this is a known phenomenon for certain combinations of
amplifiers and control units for a particular engine type. For use in a creep life calculation, the “high”
frequency behavior of the TBT signal is clearly of negligible influence. A suitably chosen filter can be
used to cut off the superimposed fluctuations, with the side effect of greatly improving the predict-

ability of the signal.
To select appropriate filter parameters for a
recording application it is advisable to look at
the periodogram (power density spectrum of
the autocorrelation function). Figure 16 shows
a periodogram for the data of Fig. 13. As al-
ready noted for the N signal spectrum in Figs.
4 and 5, the spectrum starts with a ~1/fβ part
characteristic for the long-term correlations
present in the signal. At f=0.08 the spectrum
becomes horizontal, thus indicating “white
noise”. There is an additional maximum
around f=0.28, that coincides with the peri-
odic content of the signal with a physical fre-
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Figure 17: Histogram of raw and filtered temperature signal

Figure 18: Influence of  filter application on histogram
of temperature delta  values

quency ≈2.2Hz (sampling interval:
∆t=0.125s), visible in Fig.15. The
four filters already used as examples
in Figs. 6 and 7 have been applied to
the raw data of Fig.13. As expected
the power density of the filtered sig-
nals starts to drop around f=0.08 and
decreases at a rate dependent on the
order of the applied filter (all 4 fil-
ters have approximately the same
cutoff frequency fcut=0.1). The effect
of filter application is clearly visible
also in the time domain, either in the
overall plot of Fig.14, where filter
(2,2) was used, or in the detail plot
of Fig.15, with filter (4,4). Compar-
ing Figs.13 and 14, the reductions of
noise amplitudes in the low range and
of sharp data spikes to ≈30% of their
raw value is to be noted. This is to
be expected from the impulse re-
sponse of the filter (2,2) shown in
Fig.9.

Influence of Filters on
Statistical Signal
Properties

Using the TBT data of the pre-
vious chapter, some consequences of
filter application will be shown. The
histogram of signal occurrence
counts in Figure 17 reveals an im-
portant result for this signal type.

The filter mainly influences the low temperature range, whereas the high temperatures are nearly
unaffected. The 3  peaks in the raw signal histogram are a consequence of the periodic noise and are
completely removed in the filtered signal. The filter output of the four different filters was fed into a
creep calculation for a turbine blade, leaving other input parameters (e.g. spool speed) unchanged.
The relative difference between all results was less than 0.08%, including the result with the raw
TBT. The reason is that only temperatures in the peak at the upper end of the range can significantly
contribute to creep damage. Other parameters indicating blade creep, as time spent above certain
temperature limits will also remain unaffected. The use of such simple counts for inspection planning
is discussed in  [Bra00], showing only a poor blade failure prediction capability.

The most important signal properties for the application of delta encoders are of course the
bandwidth and distribution of differences between successive samples (delta). A small bandwidth
with most data centered around zero will improve the prediction success of a coder, thus improving
compression rates. Fig. 18 (note the logarithmic scale) shows a dramatic reduction of the delta
scatter. Even a very simple coder only exploiting the number of bits necessary to code the delta
values could save nearly two bits/sample due to the reduced range. More sophisticated coders,
whose description is beyond the scope of this presentation, use statistical information gathered
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Figure 19:
Occurrence counts
for order-2 contexts
of raw blade
temperature delta
signal

Figure 20: Mean
successor delta of
order-2 contexts for
raw temperature signal



-10.00  -5.00   0.00   5.00  10.00  15.00  20.

-10.00

 -5.00

  0.00

  5.00

 10.00

 15.00

 20.00

+

-

1000

500

200

100

50

20

10
5

Delta at Timestep -2

D
el

ta
 a

t T
im

es
te

p 
-1

Boundary of non-empty contexts

Boundary of non-empty contexts

-10.00  -5.00   0.00   5.00  10.00  15.00  20.

-10.00

 -5.00

  0.00

  5.00

 10.00

 15.00

 20.00

+

-

20

10

5

2

1

0

-1

-2

-5

-10

Delta at Timestep -2

D
el

ta
 a

t T
im

es
te

p 
-1

Boundary of non-empty contexts

Boundary of non-empty contexts

Figure 21: Occurrence counts of order-2 contexts after application of  filter (2,2)

Figure 22:Mean successor delta of order-2 contexts after application of filter (2,2)

during the collection of  the
data to code each new value
exactly according to the ac-
cumulated knowledge
about its probability at the
time when the parameter is
arriving. To give an idea
about the sort of informa-
tion used for statistical cod-
ing, two pairs of figures,
Figs.19 and 20  for the raw
signal (Fig.13) and Figs. 21
and 22 for the same data
after filtering (Fig.14) are
shown. Figs.19 and 21
show, how many times suc-
cessive combinations of
delta values occur during
the whole flight (the total
number of data points is
≈42000). For the raw sig-
nal the picture is rather dis-
couraging, showing only a
marginal increase of counts
around the origin and the
boundary of nonzero con-
texts covering a large area.
The contexts of the filtered
signal are well centered and
there are no outliers.

Figs. 20 and 22 show
the average successor delta
value after the occurrence
of two preceding deltas.
Whereas the picture for the
raw signal is again not easy
to read (contexts below the
≈140° meandering line
through the origin are fol-
lowed by positive succes-
sors on the average), the
contour plot for the filtered
signal gives a well struc-
tured picture (e.g. a pair of
two deltas of 5 predicts an

average next delta of 2). A coder can benefit from that type of information by adjusting its predic-
tions accordingly.

There is an enormous literature on efficient data compression methods. Beating the compres-
sion efficiency of the best available general purpose coders requires very sophisticated tailoring with
respect to a special data type. If the delta values for engine or flight data are limited to the 8-bit
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Figure 23: Influence of filters on the
compressibility of delta coded turbine blade signals

Figure 24: Temperature and stress areas for
compressor disk

range, arbitrary text coders [BCW90] can be used
for compressing those data. Because a compari-
son of the performance of some of the best cod-
ers applied to delta coded engine signals showed
only marginal differences in compression rates,
the well documented and freely available
“ARITH-N” program in [NG96] was used to de-
termine the compression rates in the present in-
vestigation. Figure 23 gives some results for the
TBT signal example, demonstrating the reduc-
tion of required storage space that can be ac-
complished without any adverse influence on the
useful information content of the stored signal.
A comparison was made with the memory occu-
pied by the TBT signal on the new flight data

recorder of the German Tornado aircraft [SS95], that uses a RLE method with an adjustable thresh-
old for ignoring small parameter changes. The 42000 data in Fig.13 consume 67.6k byte of storage
space, whereas the application of filter (5,5) plus statistical coding of the delta signal squeeze the
data volume down to 10.7 k byte, a factor > 6.

A Simplified Model for LUM
To assess the fatigue life usage of rotating engine parts, a mathematical model has to be devel-

oped, that is simple enough to be either executed in an on-board LUM system or to process large
amounts of stored flight data after they have been downloaded and stored. A short outline of the
method is presented here. A more rigorous treatment is given in [Gra00]. During the design and
development testing of a new or modified engine component finite element calculations of the ther-

mal and mechanical behavior are performed to verify that the requirements on
safety and durability are fulfilled. During this process some high stress areas
are identified on the component, that are considered to be candidates for crack-
ing. Because the stress at those areas also comprises thermal stresses a model
for the temperature development within the component is also needed. This
model calculates metal temperatures at selected points, some of them coin-
ciding with the critically stressed areas. Fig. 24 shows a compressor disk with
6 temperature points, 4 of them critical areas.

Figure 25 outlines the most important steps of the calculation: The en-
gine inlet temperature T

in
 and the spool speed N are used as input into the

temperature calculation. Both parameters are used to determine the local gas
temperatures, that influence heating or cooling of the component. Heat trans-

fer between gas and metal is a nonlinear function of the engine operating
point. There is a mutual influence of the temperatures in the component

via heat conduction, indicated in Figure 26. The temperatures at one
time point n are influenced by all other temperatures at the previous

time point n-1. The updated temperatures and the spool speed are
used to compute the stresses at the critical areas:

 with a, b, g
i
 coefficients specific for each area.
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Figure 25: Overview of cyclic fatigue life usage calculation

Figure 26: Calculation of metal temperatures

The process is similar for all critical areas.
The metal temperature at the critical area
is then used to compute a temperature de-
pendent material strength (i.e. UTS(T))
which usually drops with increasing T.

 is then used as

input into a cycle extraction process, which
sorts the stress extremes into closed hys-
teresis loops. By using SNorm instead of S
the well known fact is considered, that for
two equal stress cycles the one with higher
T will contribute a higher damage. The
cycle extraction produces cycles  (n1,n2),
(n3,n4), … Each cycle is then converted into
an equivalent 0-max tension cycle with as-
sumed equal damage. The well known
Goodman correction is used:

 =

.

The Goodman formula usually has to be
amended by further corrections (e.g. pre-
cautions for the denominator becoming 0
or negative). Next the specific stress con-
centration factor kt for the local geometry
of the critical area and the material’s infi-
nite cyclic life threshold FCUT are used to calculate
a damage parameter:

    

Scut is a temperature dependent threshold stress value.
In the present investigation
Scut(nmax) = FCUT ⋅ UTS (T(nmax)) was used. To nor-
malize all damages at a critical area to the damage of the
largest stress cycle of the design mission, the Goodman-
corrected S0-max of  this cycle is used to calculate

  .

Here Scut = FCUT ⋅ UTS (Tref) is assumed, where Tref is a
characteristic high temperature at this area, usually that
corresponding to the maximum stress of the design mis-
sion. If  Saux is calculated from S0-max of an arbitrary cycle,
only positive values will contribute a damage increment:

Other cycles are said to fall below the fatigue cutoff. By virtue of the definition of Sref , D=1 will be
computed for the largest cycle of the design mission. Life releases for a particular component type of
an engine usually are expressed as multiples of this value.
ESN is the exponent in the so-called S/N curve, which expresses the number of survived stress
cycles as a function of the cycle’s magnitude for a certain material. This parameter determines, how



fast the damage grows with increasing stress level. For large values of ESN even small changes in
the computed stresses will have a considerable influence on the computed damage results. This
parameter plays a decisive role in the determination of the required accuracy for the storage of the
spool speed signals.

This is easily seen for a critical area with low thermal stresses, where the total stress varies ∼N2.

If additionally no fatigue cutoff would be present, the damage would vary ∼N2⋅ESN. Since ESN may
assume values as high as 4, a small change in the spool speed signal might be amplified by a factor of
8 in the damage calculation. If fatigue cutoff is present, this effect becomes even worse. For the life
limiting critical area of the compressor disk in Fig.24 (Area 2), which has ESN=2.5, the presence of
fatigue cutoff would amplify a spool speed increment of 1% at design conditions into an increase in
damage of 6.9%, assuming that the total stress is only dependent on N2.

Another effect immediately influencing the sensitivity of calculated damage to  small variations
of  the spool speed signal is the ratio of thermal stresses and centrifugal stresses in the stress law.
Stresses at areas with a high portion of thermal stresses tend to react to spool speed changes with
some delay thus de-coupling the highest stress events from “natural” occurrences of the highest
spool speeds (e.g. at the start of the aircraft).

Influences of Filtering
As preliminary tests with various types of flight data indicated some potential benefit of apply-

ing lowpass filters before trying to store the data, and no generally applicable rule was found, how to
select the filters and their parameters, a decision was made to perform some systematic tests with the
maybe most important single parameter entering the LUM calculation, the spool speed signal of the
HP spool. An available calculation model for the compressor disk shown in Fig. 24 was used, be-
cause of its representative nature and its relative simplicity involving various types of critical areas.

Because of the plan, to track the propagation of data modifications throughout the whole
calculation process outlined in the previous chapter, it was necessary to limit the number of flights to
24, also due to limitations in available data storage capacity for a student’s project. The data were
carefully selected from an existing pool of recorded flights from all 3 owner nations of the Tornado
aircraft.

Investigation Method
The data from both engines in an aircraft were used. An in-house program of the MTU stress

department for the life consumption analysis of rotating components (Mission Analysis Program)
was used to compute all relevant data with the two input parameters T

in
 and N taken from the flight

data recordings. Temperatures and stresses and the normalized stresses were computed and stored
for every time point in the flights for all areas indicated in Fig.24. All cycles found by the cycle
extraction, together with the damage at each area were also stored . The results of the unfiltered data
were used as a reference. The same computation was repeated with the spool speed signal replaced
by the delay-corrected output of each of the 25 lowpass filters. The inlet temperature was not
filtered. 1200 sets of files (24 recorded flights ⋅ 2 engines ⋅ 25 filters ) were stored to enable a
statistical analysis of the deviations between the reference using the raw data and the results with the
filtered data. The differences between computed temperatures, stresses, normalized stresses and
damages with respect to the values based on the original flight data were computed. Histograms of
the deviations were used to get an idea about the resulting distributions. Basic statistical parameters,
as expected values, medians, variances, ranges and quantiles were computed for all difference data.
A detailed description and comprehensive results are given in [Gra00].

The original and filtered spool speed data were converted into delta values and were fed into
the „ARITH-N“ file compression program [NG96] with model orders set to 1,2,3. The resulting
output sizes were recorded. Note the difference between filter order and coding order (the maxi-
mum number of predecessor values used in the coder’s internal statistics tables). Summarizing the
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Figure 27: Size reduction factors for filtered N signals

Figure 28: Influence on damage results for area
1

Figure 29: Influence on damage results for area 2

Figure 30: Influence on damage results for area 3 Figure 31: Influence on damage results for area 4

coding results, it turned out, that coding with order-1 prediction was always optimal for the raw
spool speed values and in most cases also for the data with filters (1,1),(1,2) and sometimes (2,1).
For all other filtered data order-2 coding resulted in best compression, whereas order-3 was nearly
never better than order-2, with single exceptions for filter (5,5).

The median value of storage space reduction by the statistical arithmetic coder was 3.7 for the
raw N data relative to the storage of uncompressed 8 bit delta values. This means, that the average
data volume for the 2Hz spool speed signal for 1 hour of flight time was 1944 bytes. These data
permit a lossless reconstruction of the original signal, which had a 11 bit accuracy. The additional
gain, that can be reached by filtering the data is shown in Fig. 27. In contrast to the previously shown
results for the noisy TBT signal (Fig.23), the compression gain is now only a function of the cutoff
frequency and nearly independent of the filter order with the  exception of order 1 filters, which

behave different due the lack of overshoot
in their step response. The 4 filters with
cutoff frequency > 0.2 even cause a dete-
rioration of compression rates due to their
tendency to amplify overshoots in the sig-
nal.

Accuracy Loss of
Computed LUM Results

Omitting a detailed discussion about
the various effects of the input signal filter-
ing on temperature and stress development,
a summary of the effects on the final result,
i.e. the computed fatigue life consumption
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Figure 32: Scatter bands of computed damage for area 2
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Figure 33: Scatter bands of storage requirements after
application of filter and compression

at the critical areas is now given. The
results are shown in Figures 28 - 31,
each corresponding to one critical
area. Some common features are eas-
ily visible: The application of order 1
filters always leads to a severe under-
estimation of computed damage re-
sults. Most of the order 2 filters also
produced results with too low dam-
age. Filter (2,1) performed remarkably
well with damage ratios close to 1.0
for all areas. The damage ratios of the
5 filters with order 3 were grouped
around the desired value 1.0 with best
results for the filters (3,2) and (3,3).
The filters with order 4 and 5 gener-
ally yielded an overestimation of dam-
age results. For area 3, the filters (4,3),
(4,4), (4,5) and (3,2) yielded better
results than all other filters.

These results are average results
over all investigated flights. They do
not preclude much higher deviations
of the damage results for a particular
flight. Figure 32 shows the scatter
bands of the damage results at area 2
for all combinations of flights and fil-
ters. Since there was at least one re-
sult, that was considered as an outlier
due to problems in the recording pro-
cess, it was decided to omit one re-

sult from either end of the scatter band in the plot. The scatter is lowest for filters with high cutoff
frequencies, because their output tends to follow closely the (physically correct) overshoots of the
spool speed signal. With decreasing filter cutoff there is not only an average under-prediction of
damage, but also an increase in the scatter. One remarkable effect is the clustering of scatter band-
widths for filters with equal group delay, i.e. the results for filters (5,1), (4,1), (3,1), …, form one
group, the filters (5,2), (4,2), … the next one, and so on.

Figure 33 shows the ranges of required storage space. Again one result from each the lower
and upper end of the scatter band has been omitted from the plot for reasons of consistency. The
symbols inside the range bars are at the same locations and the same scaling is used as in Fig.27, that
means the storage space values are divided by the median of the storage space required by the
compressed raw signals. The relative scatter varies only slightly with a minor increase towards the
„less-intrusively“ filtered signals (filters (5,1),(4,1),..with cutoff frequencies > 0.2). As a rule of
thumb, a factor of 2 may be assumed for the maximum deviation of the storage space from the
median for a single flight for an arbitrary choice of filters. The largest scatter [0.52,2.26] occurs, as
expected, for the raw signals, whose scatter band is thus exceeding slightly the worst case range of
the filtered data. The variability in compression ratio would have to be taken into account for the
design of a recording system, because it determines the extra memory to be allocated to avoid
memory overflows and corresponding data loss, if the readouts are to be performed after a fixed
number of flights or after a fixed engine operating time.
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Figure 34: Influence of filter application on computed
damage for critical area in HP compressor

Figure 35: Influence of filter application on computed
damage for critical area in HP turbine

The dependence of accuracy on filter parameters shown in Figures 28-31 does not allow to
derive a simple strategy for the filter selection. Some selected results of an independent study with
the same filter family applied to the same signal type (HP spool speed), but only to a single flight are
shown in figures 34 and 35. In this study all 34 areas influenced by the HP spool speed of the RB199
were included and checked for deviation from the damage results calculated with the original sig-
nals. Some of the obtained dependencies were found to be very similar to those shown in the figures
28-31, but also new types of dependencies occurred. In Fig.34 the damage results almost entirely
depended on filter cutoff frequency, with only weak influence of filter order, whereas Fig. 35 shows
a completely different behavior, with an increased over-prediction of damage with decreasing cutoff
frequency for all filter orders > 1.

Conclusions
The influence of filter application on the results of a fatigue life usage calculation is strongly

dependent on the type and the noise content of its input signals. For temperature signals and other
signals contributing to damage only via integrating algorithms, suitable filter parameters can be
derived from a spectral analysis of the signal’s autocorrelation function. Filter cutoff frequencies can
be selected to remove all noise components found in the spectrum, leaving a smoothed filter output
with great potential for efficient data compression.

Properly acquired spool speed signals have a very low noise content. Even small changes to
this signal may have an immediate influence on the computed life consumption results. The depen-
dence of the results on the filter parameters is very complex and it is neither possible to provide a
generally applicable law nor to predict the magnitude of the deviations, if more than one critical area
or even different engine components are affected.

Only modest additional gains in data compression rates can be accomplished by filtering signals
with low noise content, unless considerable information loss is accepted. By applying delta coding
together with available statistical data compression methods impressive compression rates can be
achieved already for the original signals. Therefore it is recommended to avoid filter application to
spool speed signals.

Using appropriate filtering and compression methods to each signal type would result in very
low storage requirements. To give an order of magnitude: 10k bytes of memory will be sufficient to
store one hour of engine operation without any adverse influence on the accuracy. A recording
system entirely dedicated to the data needed for engine LUM calculation could overcome some of
the disadvantages of existing on-board engine monitoring systems. It could be integrated as a sepa-
rate task in an existing monitoring or engine control system.
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