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Summary

Continuous monitoring by an on-board engine monitoring system (EMS) is an attractive
approach for economically feasible and safe engine life usage monitoring. EMS updates
must be considered if financial benefits can be expected from improved accuracy of
monitoring algorithms, if experience from engine operation or from accompanying tests
suggest the introduction of new lifing concepts, or if changes occur in build standards,
manufacturing procedures or in the engine air system. For a minimum-effort development
of an EMS update a process chain with optimized interfaces is being developed at MTU.
It includes all stages from detailed calculations to automatic generation of the EMS

software. As an example the update of the OLMOS software is presented.

Eine kontinuierliche Uberwachung durch ein on-board-System (EMS) ist ein attraktiver
Weg einer wirtschaftlich sinnvollen und sicheren Uberwachung des Lebensdauerver-
brauchs eines Triebwerks. Updates des EMS miissen in Betracht gezogen werden, wenn
finanzielle Vorteile aus verbesserten Algorithmen zu erwarten sind, wenn aufgrund
operationeller Erfahrung oder begleitender Tests neue Lebensdauerkonzepte erstelit
werden oder wenn Verdnderungen in Bauteil-Standards, Fertigungsverfahren oder
Luftsystemen vorliegen. Um EMS-Updates mit minimalem Aufwand zu realisieren, wird
bei MTU eine ProzeBkette entwickelt, die bei optimierten Schnittstellen alle Stufen von
detaillierten Rechnungen bis zur automatischen Software-Generierung umfaBt. Dies wird

am Beispiel des Updates der OLMOS-Software dargestelit.
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1, Introduction

Continuous monitoring by an on-board engine monitoring system (EMS) is an attractive
approach for economically feasible and safe engine life usage monitoring. EMS updates
must be considered if financial benefits can be expected from improved accuracy of
monitoring algorithms, if experience from engine operation or from accompanying tests
suggest the introduction of new lifing concepts, or if changes occur in build standards,
manufacturing procedures or in the engine air system. For a minimum-effort development
of an EMS update a process chain with optimized interfaces is being developed at MTU.
It includes all stages from detailed calculations to automatic generation of the EMS

software. As an example the update of the OLMOS software is presented.

2. How the EMS Works

An engine monitoring system (EMS) has a lot of tasks the most prominent of which are

- life usage monitoring of critical areas on fracture-critical parts
- incident monitoring

- trend data acquisition.

For the TORNADO aircraft of the GAF/GNy the on-board engine monitoring system
OLMOS (On-Board Life Monitoring System) was put into service starting in 1987.

"On-Board" indicates that all calculations required to fulfill the different monitoring tasks
are performed during the flight. As a result life consumption values and information about
e.g. incident occurrences (type, frequency etc.) during the flight can immediately be
obtained after the flight. The information is available on different accounts which can be
downloaded on ground by the service personnel by means of Hand-Held-Terminals
(HHT).

Data evaluation or further diagnostics can be performed at the OLMOS Ground Station
(OGS) from which a data link transfers the data to the central logistics unit. Details about



the overall handling can be found in [1].

An overview about the way the on-board part of the OLMOS system works is given in

Fig.1.

Measured data obtained by probes are transferred either via aircraft computers or directly
to the Data Acquisition Unit (DAU). In the DAU the measured data are checked for
plausibility (absolute values, rates of change). Substitute values are calculated if some
data are considered as implausible. Finally, only checked and corrected data are trans-
ferred to the lifing functions (separately processed for each engine) where the calcula-

tions required for the different monitoring tasks are performed.

The life usage monitoring algorithms consist of the following steps which use checked

input data and are executed for each module separately:

- Calculation of performance data (e.g. temperatures in the gas path, torques)

- Calculation of temperature distribution within the module

- Calculation of stresses at each critical area

- Application of a rainflow algorithm to the temperature-corrected stress history of each
critical area. Thus stress cycles are obtained.

- Assessment of extracted cycles with regard to their damage

The result at the end of the flight is an accumulated damage value for each critical area.
In the OLMOS system the damage values invariably are calculated as multiples of the
damage under reference conditions. If the damage values pass some additional plausibi-
lity checks they are stored on accounts. Otherwise substitute values are calculated and

stored together with a warning for the ground staff.

A more detailed description of the OLMOS system and the experiences gained so far can
be found in {2,3]. A comprehensive description of the user's requirements for an EMS is

given in [4].



3. Reasons for EMS Updates

As the overall lifetime of an engine is in the order of 30 years or more it is obvious that
there will always be changes in the engine design due to several reasons, some of which
will be discussed below. Changes in the engine design will mostly lead to a necessity of
an EMS update, at least in the intermediate term. Having realized this fact it seems to be
indispensable and of considerable financial importance to design the EMS from the very

beginning to the demand of easy and low-cost updates.
Some reasons for EMS updates are listed in the following paragraphs .

The first group of reasons is due to changes in the engine design which may be caused

by

- module re-design (e.g. for improved performance)

- changes in the engine air system which influence the thermal behavior of the modules
(e.g. improved air seals, changed bleed air mass flows, changed aerodynamics of
stators)

- experience from operational usage which indicates that the distribution in the life
consumption within a module is different from the initially assumed values

- experience from operational usage and accompanying tests which indicate the

necessity of considering additional damage mechanisms (e.g. crack propagation)

These points are essentially engine design related. An analysis of the changed situation
will mostly lead to a re-analysis in some area of the engine lifing environment (e.g. perfor-
mance calculations, design, life statements, lifing philosophy) which in turn must be
accompanied by a respective adaptation of the EMS software. In some cases, an update

of the EMS hardware may be recommended, too.

A completely different reason for an EMS update may occur from further developments
in the monitoring algorithms which promise financial benefits from implementation. An

example is the consequent introduction of transient temperature algorithms for the IP- and



HP-modules in the OLMOS system.

The temperature distribution versus time within a module is a process which is significant-
ly influenced by transient situations. The assumption of stationary temperatures which
only vary with some polynomial function of the spool speed is too crude for the HP
modules and, to a lesser extent, for the IP modules, too. Therefore transient temperature
algorithms were introduced where the current temperature distribution is a function of
both current engine operating parameters (e.g. spool speed) and of the temperature
distribution at the previous time step. Thus the transient behavior of the temperature
distribution within a module can be modeled by far more accurate than with stationary
temperatures only. This in turn influences thermal stresses which are a function of
temperature gradients. There are critical areas where thermal stresses have a significant
influence on the overall stress. In these cases an accurate model of the temperature
development within the module versus time has a significant impact on the accuracy of
the calculated stresses and, as a consequence, on the calculated values of the accumu-

lated damage.

A simpler procedure, e.g. using stationary temperatures only, requires some conservatism
as not to underestimate the thermal stresses. The result often is a significant overpredic-
tion of thermal stresses and, finally, of the damage during the flight. In this situation,
introducing transient temperature algorithms increases flight safety and, normally,
decreases the calculated damage values. This allows a longer usage of the individual

modules which may have an immediate impact on the number of spare parts required.

Summarizing, it shall be stated that the introduction of more accurate algorithms in-
creases flight safety and, in most cases, the time of usage. This coincides with financial
benefits as fewer spare parts are required. If the costs for the EMS update (from develop-
ment to introduction into service) are low enough, an EMS update just on the basis of

more accurate algorithms may return significant pay-off.

In practice, both "external reasons" as engine re-design and "internal reasons" as

development of more accurate algorithms occur simultaneously. Mostly an EMS update



is triggered by external reasons. More accurate algorithms underline the necessity and

financial worthiness of the update.

4. P in f

4.1, Overview

It has been shown in the previous section that EMS updates will invariably occur. For
maximum customer satisfaction and minimum-effort for the update it seems to be obvious
to take into account the occurrence of EMS updates at the earliest possible stage of the

EMS design, ideally from the very beginning.

An understanding of the process stages that are involved in an EMS update (and in the

initial EMS development, too) is a fundamental prerequisite for such a design.

The first step is a detailed temperature and stress analysis followed by a step establis-
hing a reduced physical model of the module for those critical areas which shall finally be
monitored. These steps can be summarized as "establishing the physical model" and are
typically performed in the performance and stress departments. The latter also defines in
detail the monitoring algorithms and provides the coefficients which are necessary for the

software design.

The next step is done in the software department where the software requirements are
converted into software which can be used directly on the processor of the monitoring

unit.
Finally the HW/SW-integration takes place where the software is integrated into the on-
board environment and is finally downloaded to the storage medium (e.g. EEPROM) that

shall be used in the monitoring system.

An EMS software update may be accompanied by a hardware upgrade. This is the case
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for the OLMOS where a RAM extension and additional EEPROMs with software loading
function are incorporated into the already existing board. Fig.2 shows the upgraded board
which is made by DORNIER.

As there are several steps and several departments involved in the complete process it
is evident than an optimal data flow from the first to the last step is mandatory. To
achieve this goal MTU is establishing a process chain comprising all these steps. The

basic requirements and the MTU approach are described in the next subsection.
4. i i

The basic requirements for the process chain are to maximize data flow, flexibility and
user comfort and to minimize paper work, man induced errors, response time after

changes and cost for EMS update.
A typical element in the process chain between two consecutive steps in shown in Fig.3.

Step i provides output data (e.g. stresses from Finite Element (FE) analysis). This output
data is read by an interface program which is controlled by an easily understandable
control file. The output of the interface program can be used by step i+1 as input data. By
simply changing some values in the control file (e.g. selecting some additional critical
areas from the detailed FE analysis) a new run of the interface program creates new

input data which can immediately be used by the program in the next step.

Some effort has to be put into the design of the interface program (modularity, flexibility,
user comfort). A clear concept increases user acceptance and helps to save a lot of

money.

It shall be pointed out that a strict separation of the different steps in the whole process
must be maintained. It is not useful to mix different steps or to interconnect them by e.g.
tuning the program of step i+1 to the result of a certain program in step i. If a new
program is added in step i (e.g. as an alternative to the already existing program, which

11



may happen with the introduction of a new FE package) the program of step i+1 has to
be changed, too. This situation should be avoided as these "core programs" are designed

to fulfill a certain task independently of the source of the input data.

The link between two consecutive steps shall always be done by an interface program.
In some rare cases the interface program might be left out and the output of step i can

be used directly as input for step i+1.

The first step in the process chain is a detailed temperature and stress analysis, typically
performed by FE analyses. Using the results of these detailed analyses potentially critical
areas of the module are selected on the basis of temperature and stress histories during
the design mission. Damage mechanisms are selected and the damage at the potentially

critical areas is assessed with the aid of the material data base.

The output of the first step (FE analyses) are normally large files containing data about
the behavior (temperature and stress) during a design mission for the complete module.
Furthermore potentially critical areas have been selected with the aid of a post-processing
routine for life assessment. Now the interface program extracts the required data of the
potentially critical areas from the FE output files and generates the input data for the next

step, the establishment of the reduced models.

As it is not possible to transfer the detailed FE model to the monitoring system, a reduced
physical model for temperature and stress behavior at the potentially critical areas has to
be established. This is done on the basis of the underlying physics by means of optimiza-
tion procedures, where parameters of the reduced model are optimized in such a way
that the behavior in the reduced model fits the original FE data in an optimal manner. The
results of the optimization step are reduced models for temperature and stress behavior

at the critical areas.

These reduced models are now applied to a set of mission data which can be either
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tasks the aircraft has to fulfill. An analysis of these missions yields life consumption
values for all potentially critical areas. On the basis of a comparison between the predic-
ted life values and the life consumption values those critical areas are selected which are

the most critical ones and shall be considered during on-board monitoring.

After the completion of the reduced models the next interface program uses the output
and some control information to write all the required data (mainly coefficients for the

different models) in a format that can be read by the software generator.

4.4. Pr hain: Software Desian

The next step in the process chain is the conversion of the mathematical algorithms for
the description of thermal and mechanical behavior of the monitored components into the
on-board software and a functionally equivalent program for ground-based processing.
The MTU approach to optimize this step and some problems that arise in this context
(especially for an integer arithmetic processor as used in the OLMOS system) is

discussed in the following section.

4.4.1. Program Generation

A first step in the conversion of the algorithms for the description of thermal and mecha-
nical behavior into a program for integer arithmetics is the examination of the range of
input data by analysis of many available flight recordings, engine specifications, test bed
data and also of plans for engine modifications in the future. By using more or less
sophisticated mathematics, interval analysis, debugging and tracing techniques for
programs and, to tell the truth, sometimes also by trial and error all intermediate results
have to be checked for sufficient accuracy and avoidance of overflow taking into account
all reasonable combinations of input. This process is illustrated in Fig.4, showing the
steps necessary for the determination of ranges of variables. It has to be guaranteed by
the input signal checks and filters that only parameter combinations within the valid range

are fed into the program representing the mathematical engine model.
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After establishing a prototype program with checked and proven ranges for input and
model parameters the development of a corresponding generator program has been
found to facilitate future work. This program removes the tedious and error prone tasks
of computing scaling factors, shift increments, writing down long tables or repeated control

structures.

The ultimate goal of the MTU efforts is to support automatic performance of most of the
intermediate steps in software development. The vision is an immediate automatic
generation of source code for the on-wing software from the design documentation.
Existing software engineering tools have significantly improved the documentation
process, which is now also governed by comprehensive rules, e.g. [5]. However, the pro-
grammer's expertise in the conversion of mathematically demanding algorithms into

efficient and safe programs cannot be totally replaced by CASE tools.

Of course there is a trade-off between the effort to create and maintain program genera-
tors and the effort of manual program changes. The greatest benefit can be obtained with
using automatic program generators, if the structure of the mathematical model remains
stable and only coefficients of the model are revised. Also to be considered is the

reduced amount of required testing for automatically created programs.

A direct generation technique for program code has been selected for the RB199 Engine
Life Consumption Monitoring Program (ELCMP, written in the ANSI C language) because
processor load is considered as the major bottleneck for the updated ELCMP, whereas

program size was considered as uncritical after the introduction of a memory upgrade.

The main advantages of direct program generation are the elimination of trivial operations
on special operands (0, 1, etc.), a greater flexibility in the scaling of intermediate results
leading to improved accuracy, an easy treatment of modified algorithms for single areas

and a reduction of program control overhead.

Problems are the complexity of conversion programs, additional documentation, an in-

creased probability of introducing program errors at places of manual intervention and the
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creased probability of introducing program errors at places of manual intervention and the

readability of machine generated code.

4.4, i imization of ftwar

A limitation of processor load and memory usage in a newly developed system is quite
common in airborne computer systems. The resulting reserve gives the system a growth
potential which may later be exploited for improving existing system functions or for

introducing new functions.

During the lifetime of an airborne computer system the reserve capacity becomes smaller.
If limits of processor capacity or memory cannot be circumvented by hardware changes,
optimization of the software may push the limits somewhat further. Examples for areas of
optimization are the elimination of time consuming control structures, inlining of short
functions to reduce call overhead, the loop unrolling or reordering of instructions to allow

the processor an optimal usage of its facilities (e.g. register usage).

In real time systems there is the additional constraint of fulfilling the requirements that the
maximum time needed to perform certain functions must fit into some given time interval.
The nature of the algorithms used to compute life consumption of engine components is
basically different from algorithms used in control systems, where most of the tasks are
repeated identically each time step. Due to the algorithms used for cycle extraction there
is a high probability that more than one cycle is found for a critical area at the same time
step leading to a very high peak processor load at single time steps. Balancing of
processor load between time steps is now accomplished by algorithmic modifications of

the cycle extraction procedure.

The last chance to reduce computing time is the conversion of time consuming functions
into assembler code for the target processor. This should be kept to the minimum amount
possible since portability and maintainability is negatively affected by using too much
assembler code. In the newly developed algorithmic part of the RB199 ELCMP only a few

assembler functions will be used, e.g. for some mathematical functions, for the computa-
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tion of matrix elements for heat flux or for the formula for thermal stresses.

4.4 filwar in

A set of test cases (test procedures, test data and methods for the evaluation of the test
results) is provided to perform unit tests, integration tests and qualification tests. Typically
these tests include a combination of synthetic data and flight-recorded data to cover all
aspects of software function. Using a comprehensive and mature set of tests will reduce

the time needed for software updates.

Tests can be improved by feedback of user experience, especially by provision of flight
recordings of unusual flights. Examples of such flights are operations at limits of flight
envelope, engine shutdown during flight, occurrence of failure incidents ( surge or stall,
sensor failures, malfunctions of the control system, mechanical defects of the engine,

blade ruptures, bearing failures etc.)

All functions of the EMS have to be designed to cover the full possible operating range
of the engine, not only the range currently used by the customer, including a reasonable

margin to cover also known or probable failure conditions.

It is an MTU requirement for the lifing part of the EMS that all failures occurring with
some reasonable probability will not lead to a breakdown of the life monitoring algorithms.
There is, however, a trade-off between safety against spurious input failures under normal
conditions and the continuation of life usage monitoring in cases of severe engine mal-

functions.

It is MTU policy to set check limits for signals influencing life usage monitoring comparati-
vely narrow, because failure conditions inhibiting the correct accumulation of life usage
are nearly always a strong hint on necessary maintenance actions. The benefit gained
from early information on incipient failures in the engine or its sensors justifies the

additional effort to perform a substitute calculation for flights with muted lifing resuits.
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4.4.4, Ref nd B i

The development of the monitoring software for the airborne system is accompanied by
the development of a functionally equivalent program for the processing of flight-recorded
data. This program can either be used for continuous processing of all flights of an

aircraft fleet (or of selected aircraft) or to process recorded flights from special purpose

campaigns.

This program has options which give access to information normally not available in the
on-wing system (e.g. plotting of input data, output of all cycles contributing to damage of

selected critical areas, performing statistics).

There are several possible strategies to develop such a program for ground based
processing, each of which has some advantages and disadvantages. For the OLMOS
system a strategy was chosen where the on-board software is used as "kernel" with a
customized user interface (input/output, flight data formats). Therefore only one version
of the algorithms is required (simple configuration control) and identical results for

on-board and off-board processing are obtained.

5. Summary

As the necessity for an EMS update naturally arises during the engine lifetime, is is
reasonable to account for this fact by developing a "modification-tolerant" environment for
EMS updates.

In the MTU approach a process chain is being developed where the different steps in the
modification process from detailed FE analyses via establishing a reduced model to
automatic software generation is covered. The aim of the process chain is to minimize the
effort (and therefore the costs) for an EMS update by using standardized procedures,
clearly defined interfaces and, during the last step, a software generator program which
reads output from previous steps and generates the on-board software automatically. This
system has been used in the current OLMOS update and shall be developed further to
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achieve even shorter response time and lower costs which are vital for customer satisfac-

tion.
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