
Proceedings of the 19th Symposium

Aircraft Integrated Monitoring Systems

Garmisch- Partenkirchen, Germany

May 4-7,1998

AIMS98
Aircraft Integrated Monitoring Systems

Published by: Arbeitskreis Telemetrie e.V.

1

4HE�)MPORTANCE�OF�4ESTING�FOR�3UCCESSFUL�,IFE�5SAGE
-ONITORING�3YSTEMS

*¼RGEN�"ROEDE��(UGO�0FOERTNER��+LAUS�2ICHTER

MTU Motoren- und Turbinen-Union München GmbH
P.O. Box 50 06 40

80 976 Munich, Germany

!"342!#4

Life usage monitoring systems contain two areas of fundamental interest for
validation, namely the correct functionality of the life usage monitoring algorithms and
robust implementation.

The functionality of the algorithms is validated against the entire lifing process.
Since it is not possible to check the results of the monitoring algorithms against a
statistically representative large number of missions calculated by the design tool, a
numerical simulation of this process is required. A procedure based on the Monte Carlo
technique has been developed, which allows the assessment of the deviation of the
monitoring results in terms of average and scatter from the ‘truth’.

To validate the correct function in the target system, recorded input parameters in
form of digitised sets are fed in. With identical inputs to the reference programs and the
on-board versions of the algorithms, it is possible to obtain bitwise identical results
between both implementations.

Integration tests and flight tests concentrate on the robustness of interfaces and
on the behaviour of the monitoring system under non-standard operating modes.

Accessibility and data transfer are important in early stages of development, e.g.
with prototype installation. To involve intended customers of the monitoring system into
the testing process often reveals problems not covered in the specification of system or
software.

).42/$5#4)/.

When speaking about aero engine life usage monitoring systems, we understand
systems which acquire aircraft and engine signals over whole missions, and process
them into life consumption figures for selected critical areas. Life consumption is then
accumulated over the entire engine life time. The life consumption data are tagged with
aircraft and component part numbers and serial numbers, and are collected in a data
base for the whole fleet. The fleetwide data in this data base allow for statistical analyses
of life consumption, trend estimation, maintenance planning and spare parts
management.

Generally, such a system is designed as a distributed system, what means that
parts of the system are located on-board in the aircraft and other parts on ground at the

2

air bases and in logistic support centres. All the parts of this distributed system need to
communicate with each other.

Details of the functionality and the architecture of aero engine life usage
monitoring systems as well as experience gained over years in service were the subject
of several presentations [1 - 8]. But one aspect very important for the success of such a
system has not been much pronounced in these publications, namely testing and
validation as part of system development and establishment.

2%15)2%-%.43

An overall requirement for a distributed life usage monitoring system is that it
works to the satisfaction of the customer. This general requirement determines the
quality of the whole system and can be decomposed into a number of detailed
requirements which specify (and also quantify) the quality characteristics of the system.
Certain aspects of the system development process - particularly the quality
management and verification and validation activities - are influenced as well.

Software quality characteristics are defined in ISO/IEC 9126 [9]. They
encompass functionality, reliability, usability, efficiency, maintainability and portability.
The effort necessary to achieve and proof these characteristics depends mainly on the
criticality of the software and the system wherein the software is embedded. The
criticality level of a system is normally contractually fixed.

The criticality of an item expresses the significance given to a functional failure of
that item. The criticality is categorised in levels, where higher levels are related to more
severe consequences expected for the case of a functional failure. Consequences
considered are risk to people, economic losses or damage to property and
environmental damage. Malfunctions of systems of the highest risk class may cause the
death of many people and may lead to the ruin of large companies, whereas breakdown
of an uncritical system (low risk class) may only put some inconvenience to the operating
personnel.

Examples for attaching evaluation techniques to software characteristics and
criticality levels are given in [10]. To evaluate the functionality or functional correctness
of an item of the lowest level, simple black box testing may be sufficient, whereas the
proof of functionality of an item of the highest level requires inspections, walkthroughs,
traceability evaluations, black box testing, white box testing and formal verification. The
reliability of a software system with low criticality level might be sufficiently guaranteed by
using the facilities provided by the chosen programming language and by a users
survey. The reliability evaluation of a critical system additionally calls for field experience,
fault tolerance analysis, stochastic system analysis, a reliability growth model and as a
final step also for a formal verification.

Quality cannot be achieved by only testing and assessing the final product. This
means that testing is only one aspect of the quality assurance process. Quality
assurance involves all kinds of software product evaluations. Checks should be applied
for completeness, consistency, feasability, testabilty, coverage of all requirements,
accuracy and adherence to plans.

Quality assurance measures for software related products typically include
constructive measures (e.g. using software development standards, supporting the

3

development process by methods and tools). Development tools are available to support
system and software specifications, architectural and detailed design. For example,
excellent guidelines are available for the Ada95 language [11].

All formal measures to ensure software quality assume that system requirements
and software specification are correct and complete. But the reality looks different.
Experience shows that the operational environment, the interfaces to the operators and
sometimes the handling of the data outside the on-board equipment are very vaguely
described. Those deficiencies normally show up very late in the system integration
phase. And also operational conditions never expected in the system definition phase
turn out to be the normal daily practice.

Other specification deficiencies concern requirements not being testable.
Generally, any specific requirement should be such that an objective and feasible test
can be designed which is able to determine whether the requirement has been met.

For the success of a monitoring system it is also essential that the quality
characteristics are not only required for the monitoring software itself but in a similar way
for data bases, manuals, documentation and training material.

34%03�/&�3934%-�$%6%,/0-%.4

The first step in the development of a life usage monitoring system is (or should
be) the definition of the overall functionality and the allocation of individual tasks to the
different parts of the distributed system. In this phase often the accuracy requirements
are specified as well.

In the following steps the algorithms and interfaces between the parts of the
system are defined. Algorithm development itself is a process with a number of
sub-tasks. The algorithms serve for the calculation of life consumption from the
measured input signals.

The core tasks in the life consumption calculation process are the calculation of

• performance parameters

• transient temperature distribution within the components

• transient total stresses at the monitored critical areas

• the resulting life consumption at these areas

These core tasks are supported by additional tasks as

• detection of engine start (start criterion)

• detection of engine shut down (end criterion)

• input data check and correction

• input data filtering and synchronisation

• result check and correction

4

and by service tasks such as

• generation of data sets, containing engine configuration and life usage data

• data base management

• analysis of the fleetwide life consumption data with respect to trends,
maintenance planning and spare parts management

Interfaces provide the relationship between two or more entities (which may be
software items, hardware items or human operators) where data are shared, provided or
exchanged.

Figure 1 gives an impression of some of the interfaces whose correct function
needs to be proven during development and system testing. Whereas the interfaces in
the upper part of the figure are accessible by usual test methods (simulation, debugging,
comparison with independent reference results) most of the interfaces in the lower part
of the figure involve man machine interactions, transfer of engine hardware together with
information not stored in computers. Large differences in the training level of personnel
and also in the organisational structure of the interacting parties add a great deal to the
complexity of the data handling process. The only viable solution to guarantee long term
integrity of the lifing data of the engines and components of a large fleet is to perform
continuous checks on the accumulated information in the central logistic support system.
Those checks include comparisons against statistical models derived from the analysis
of recorded flight data as well as tracing single parts for continuity and plausibility.
Detected errors need to be corrected before they could lead to an inadvertent usage of
parts beyond their released life limits. Reasons for corruption of the data have to be
analysed and corrective actions (adaptation of interfaces, training of personnel, shift of
responsibilities) need to be proposed.

The next steps encompass formal software development, again separated into
different phases, which are

• definition of functional requirements derived from the system specification

• software specification (including the algorithm functionality)

• software design and coding

• software testing (unit, component and integration testing)

• system validation

For formal software development a number of international (and national or
project related) standards are set out which regulate the details of the process and the
deliverables (e.g. [9 - 16]).

24#!�$/���"�;����=

RTCA is a private, not-for-profit organisation that addresses requirements and
technical concepts for aviation. The products of RTCA are recommended standards and
guidance documents that focus on the application of electronics technology to implement
new or modified concepts and to satisfy related requirements. The DO-178B and its
predecessor DO-178A form the basis for the certification of many on-board systems
involving software, especially in non-military projects.

5

&IGURE��� Interfaces of an Aero Engine Life Usage Monitoring System

6

$/$����!�;����=

The DOD2167A military standard (now superseded by [14]) has been used as
the basis for the development of several engine control and monitoring systems
throughout the world. The standard was designed especially for mission critical or
weapon system software and puts its emphasis on the preparation of documents. This
standard assumes a sequential "grand-design" model for system development, using a
strictly top-down functional decomposition, which is usually not applicable to the
incremental or evolutionary models being applied for the development of monitoring
systems.

-),34$����;����=

The MIL-STD-498 standard was issued in 1994. It is far more flexible with respect
to process models and also with respect to the documentation effort. Although we have
not officially referenced this standard till now, parts of it (i.e. its associated DIDs [16]
and the supporting reference material [15]) have been used as a very useful guideline
for conducting development, testing and documentation in our actual projects.

Parallel to the software the necessary hardware is developed and validated, also
according to detailed standards.

Very important in all these steps is the validation aspect. Two areas are of
fundamental interest. These are the correct functionality of the life usage monitoring
algorithms and their robust implementation.

!,'/2)4(-�!##52!#9

‘Correct functionality’ of the monitoring algorithms should include a statement
about the algorithm accuracy. The algorithm accuracy is a measure how far the life
consumption quoted by the monitoring algorithms deviates from real life consumption.

And here already start the problems. The real life consumption of an aero engine
part is not accessible. In fact, this would require to operate an engine part until failure.
But nobody would do it, due to the hazardous consequences of such failure. Thus, only
the predicted part life can be utilised.

Prediction of the life of aero engine critical parts is a sub-task of the design and
engine certification process. Lifing activities start from predicted or measured engine
performance data. Transient temperature distributions and stresses due to many types
of loading are calculated. Stress and temperature histories for all potentially critical areas
are considered in order to assess the ‘expected predicted safe life’ of a component.
Tests are performed to verify the life predictions for the life limiting critical areas. Test
evaluation - which includes effects of overload and scatter in life potent ial - together with
the analytical prediction lead to the ‘predicted safe life’ of the component. The ‘predicted
safe life’ of each critical engine part is formally declared in a Life Statement.

This lifing process in total produces the best information available, is accepted by
the certification authorities, and can therefore be considered as a sound reference for
development of life usage monitoring systems.

7

For the lifing process highly sophisticated tools (such as finite element codes) are
employed. Intermediate results - which are performance data, temperature distributions,
stresses and predicted lives - form a pool of basis data for the algorithm development.
The basis data are representative for the whole range of engine operating conditions.

The life usage monitoring algorithms themselves are based on physical models
and form approaches to the complex design models. The algorithms contain parameters
which are optimised during the algorithm development process. The optimisation criteria
are to minimise the deviations between basis data and algorithm results, both locally and
globally.

Since the monitoring algorithms are based on physical models they allow for the
interpolation between the basis data as well as for extrapolation to unusual engine
operating conditions. In particular, it is evident that the algorithms basically behave as
the complex physical model. Only quantitative deviations occur. The accuracy analysis is
based on these deviations, which are statistically described as frequency distributions of
the intermediate results. These frequency distributions are established as part of the
algorithm development process for performance data, transient metal temperature
distributions and critical area stresses.

The accuracy of the life usage monitoring algorithms is defined as the average
deviation between the life consumption quoted by the monitoring algorithms and the life
consumption predicted by the complex thermal and mechanical structure analysis used
for engine design, when both are fed with identical input data profiles. Normally, the
accuracy specification requires that the average of the quoted life consumption over
several missions under real engine operating conditions does not exceed a specified
window. Such a definition allows for larger deviations for rare flights with exceptional
operating conditions which may not be accurately covered by the monitoring approach,
but maintains the overall integrity of the monitoring system. A minimum value is defined
to ensure that the quoted life consumption does not underestimate the real consumption
in order to maintain flight safety requirements. On the other side, a maximum value is
established which guaranties the quality of the algorithms.

This type of accuracy definition calls for a statistical validation procedure. The
procedure chosen uses the Monte Carlo technique. The idea of the process can be
outlined as follows.

The design procedure and the monitoring algorithms produce similar results for
identical input data, since both are based on physical models and the monitoring
algorithms have been optimised to closely match the basis data. The difference between
the results is a function of the deviations which appear in the performance, temperature
and stress modules. The deviations of the individual modules need to be represented as
frequency distributions as sketched in Figure 2.

The difference between the results could be calculated if both the exact procedure
and the monitoring algorithms were applied to a certain mission profile.

But it is also possible to calculate this difference directly from the deviations that
occur in the different modules under this particular mission profile. For this route, it is
necessary to identify the influence of these deviations on the final life consumption
result. The calculations have only to be performed twice, namely once without deviations
and secondly with the deviations which have to be superimposed to the intermediate
results at the interfaces between the modules. Since both the exact method and the

8

algorithms behave similar, there will be no difference if one or the other procedure will be
employed.

The application of the exact
design procedure needs large computing
resources whilst the monitoring
algorithms work very effectively. As the
accuracy specification requires the
consideration of average values of life
consumption, not only one but a large
number of calculations need to be carried
out. For the statistical combination of the
different deviation influences the Monte
Carlo technique is used, which requires a
statistically representative number of
calculation repetitions. Therefore, it turns
out that the only sensible way for
validation of the monitoring algorithm
accuracy is the second one where the
influence of the deviations on the final
result is identified by the application of
the algorithms themselves. Figure 3
shows a flow chart of this process and
allows for comparison between both
routes. The route with dashed boxes is
the one not chosen.

The analysis uses a number of
representative mission profiles. In a first
step, the missions are fed into the
algorithm and the corresponding life
consumption is calculated. These results
serve as reference for the subsequent
steps.

In the second step, the same mission profiles are applied but the intermediate
results at the interfaces between the modules are modified with simulated deviations.
These are derived from the deviation distributions which have been generated in the
algorithm development process. The deviation actually applied is picked randomly from
the relevant distribution curve.

The second step is repeated several times with randomly different simulated
deviations, generating a variety of life usage results for each mission profile. These
results differ from the reference result as well as from each other. For these results
again a frequency distribution can be drawn and also average value and scatter
calculated. The difference between the obtained average value and the reference result
gives the quantitative measure for the accuracy of the monitoring algorithm.

6%2)&)#!4)/.

Verification of the life usage monitoring system has the final aim to show evidence
to the customer that the product meets all requirements. This includes also to assure

t

t t

t

Frequency Distribution

Deviation

Output Output

Module of
Monitoring Algorithm

Module of
Design Procedure

Input

&IGURE��� Deviation between Monitoring
Algorithm and Design
Procedure

9

&IGURE��� Accuracy Simulation

Frequency Distribution

Frequency Distribution

Frequency Distribution

Performance
Algorithm

Performance
Algorithm

Temperature
Algorithm

Temperature
Algorithm

Stress
Algorithm

Stress
Algorithm

Damage
Model

Damage
Model

Performance
(exact)

Component
Temperature
(exact)

Critical Area
Stress
(exact)

Damage
Model

Input (Mission)

+ -

+
+

++

Simulated Deviation Result Deviation

++

+ -

+ -

Accuracy
Average

Accuracy
Average

10

that the product does not contain other than the specified functionality. Tests failed at
the first time need to be repeated after product modification until the tests are finally
passed.

The whole verification activities are separated into a number of sub-processes
which address the different aspects as correct algorithm implementation, software
integration with the operating system and control software, hardware integration into the
target computer system and eventually system integration of the complete monitoring
system.

Software development standards distinguish between informal testing and formal
testing. For formal testing, the principle of "independent verification and validation" is
essential. This means that the persons responsible for qualification testing of a given
computer software configuration item (CSCI) shall not be the persons who performed
detailed design or implementation of that CSCI. This does not preclude persons who
performed detailed design or implementation of the CSCI from contributing to the
process, for example, by contributing test cases that rely on detailed knowledge of the
CSCI’s internal implementation.

Our own experience with several projects shows that it is not necessary to have
independent personnel for testing already in early phases of development, where testing
is considered to be only informal. The aim of informal testing is the identification,
reproduction, localisation and elimination of bugs. A few highly qualified developers of
software responsible for all aspects of development, including participation in system
design and also internal testing, equipped with suitable tools may perform highly
competitive not only in terms of productivity but also with respect to low error rates when
compared to large development teams with a strict separation of responsibilities.

Where independence is really considered to be necessary we have made positive
experience with the so-called multi version programming, where an independent person
creates another instance of a CSCI based on the same specification, but without
knowledge of the implementation details of the first version. This method has the
advantage of providing a much better motivation to the tester giving him the chance not
only to detect errors in someone else’s work, but even to replace the original version with
the new one, if this new one outmatches the item under test with respect to correctness
or performance.

Many software development procedures require to start software testing with unit
tests. We found that this may be not very practical as it needs a lot of work without any
real benefit. Coding errors are much more effectively detected if software units are
already integrated to functional groups and these software groups extensively tested,
where the same result is achieved in shorter times with less effort.

Another point of concern is the re-use of software items. When dealing with
similar projects - e.g. life usage monitoring software for different engine types - it is quite
natural that some amount of functionality is the same. As software is designed in a
modular way, there are a number of software modules which are identical in different
projects. This allows for re-use of these modules. The concern is now the testing of
these modules. Is it really necessary to test already validated software items again and
again?

One of the simplest means to reduce the expense of software testing is to re -use

11

already tested software modules with proven performance and reliability. Although it is
very common to re-invent the wheel many times, this is certainly not the best possible
approach. A pre-requisite for reusing software in aerospace applications is the
willingness of airworthiness authorities to accept a reduction of the amount of required
testing for those software components, which have already been tested in other projects.
This in turn requires the participation of software engineers with sufficient knowledge of
available existing software modules early during system design.

In the last few years, a significant change of minds has become visible with
respect to re-use of software. Whereas the now outdated 2167A standard [13], which
has been used as the basis for many monitoring projects is written in terms of new
development, the new 498 standard [14] acknowledges the necessity and advantages
of re-using or re-engineering of existing software and provides practical guidelines how
to apply the standard to re-used items.

One of the most important verification aims is to proof the correct implementation
of the life usage algorithms. Here we followed the route of multi version programming
discussed above. One version is the so-called Mission Analysis Program (MAP). This is
a program package written in FORTRAN, which can be used for all engine types, for
which we have developed monitoring algorithms. It is installed on workstations in the
Structural Mechanics department of our company. The main purpose of this program is
to analyse missions (synthetically generated profiles as well as flight recorded data) with
respect to life consumption and other tasks in connection with engine life management.
The MAP also has the functionality to perform the Monte Carlo analysis outlined above.

The other version is a so-called reference program for the specific project. It is
written in the project specific programming language (preferably C or Ada). With respect
to the life usage algorithms the source code is exactly the same as for the target system,
but compiled and run on a workstation or a personal computer (PC).

Both programs are fed with identical input profiles. The complexity of the mission
profiles increases in the course of testing. First only simple synthetic profiles (e.g. just an
engine acceleration and deceleration) and later on more complex profiles, up to
recorded mission data with unusual engine manoeuvring are used.

During integration of the life usage algorithms, extensive tests are performed to
check the accuracy of the intermediate results (temperatures, stresses) and of the final
results (damage increments) for a representative variety of engine configurations and
test data (recorded flight missions). The test method applied is a comparison of the
target software results against those of MAP maintained by the Structural Mechanics
department. The tests are performed by an independent test team (typically consisting of
highly qualified software engineers), whose main task is the automatisation of test
procedures. This automatisation is indispensable for limiting test cost, because the initial
investment into an optimised test environment pays back several times, when tests have
to be repeated due to errors detected or due to necessary design modifications in
subsequent development phases. The requirements for accuracy of the on -board
implementation of the monitoring algorithms is derived from the attainable accuracy of
the monitoring model relative to the FE-calculation of the rotor structures. A
characteristic acceptable deviation for temperatures has an order of magnitude of 10 K
(for more details refer to [4]). To retain this accuracy also for the implementation within
the target system, the deviation between accurately computed results with the
monitoring model and its approximation (e.g. using integer arithmetic) in the on-board

12

&IGURE��� Temperature Difference between MAP and Reference Program
Revealing the Programming Error

&IGURE��� Temperature Difference after Error Fixing
(note the different scale)

13

software is required to be considerably lower (e.g. 1 K).

An impression of the effectiveness of this test procedure can be obtained from the
following example. During one of the comparison tests of the current version of the
RB199 ELCMP (refer to [8]), a problem report was raised by one of the software
testers, indicating a poor correspondence of some stresses on a turbine disk, especially
in the idle phases at the beginning and at the end of an engine run. A subsequent
analysis by the responsible software designer revealed that the stress calculation itself
was correct, but that the deviation was already present in an intermediate result
(stationary leading temperatures) not analysed during earlier tests. The difference
between the MAP result and the (incorrect) reference software result is shown in
Figure 4. It is clearly visible that the difference is very low during most of the flight, but
exceeds the acceptable tolerance of ±1 K for long time intervals at the start of the engine
run, a few times during the flight and again at the end of the flight. By debugging and
code analysis the error was traced back to the computation of stationary leading
temperatures, where one special case (interpolation for low spool speeds) contained a
programming error. Earlier tests had failed to reveal this error, because due to different
behaviour of the engine standards, the corresponding interval had not been hit with the
applied test data.

After a correction of the programming error (which in fact resulted from copying a
similar piece of code from another module which did not cover the more general
situation at the target location) and building a new version of the software, the test was
repeated and now the results became very satisfactory and the deviation dropped below
the required limit of ±1 K (Figure 5).

Similar comparison tests are made between the reference program and the
software integrated in the target system. But here the accuracy requirements are even
higher. As the source code is exactly the same, we expect that the results are bitwise
identical. Any deviation detected is a reason to investigate for errors.

The necessity to perform comprehensive tests of the internal processing and of
the internal interfaces within the on-board components of an engine monitoring system
can only be met by providing a hardware test environment as shown in Figure 6.

The general rule is to test each functionality at the highest accessible level and to
limit hardware related tests to issues like resource utilisation, real time behaviour or
hardware error detection. The final testing of interfaces has also inevitably to be
performed with target system components.

There is a significant benefit from performing the major part of software
development and testing in a standard computer (mainframe, workstation, PC)
environment. The compilation and analysis times are significantly reduced.

If monitoring systems are to be integrated as subsystems of an engine control
system or as part of a general purpose data acquisition system, the availability of the
final target hardware may be delayed to a rather late phase of development. In such a
case a processor prototype board may be helpful to check the functionality of the target
system compiler and the processor load. The additional effort for the adaptation of the
prototype hardware development system should be considered.

In addition to a safe and reliable design of the system there should be facilities to
support effective testing:

14

• accessibility of interfaces for software and parameter loading in the aircraft
environment

• a way to switch from input signals to recorded digital parameters

• facilities to monitor the system by test protocols or, preferably, ...

• ... cyclic transmission of status information via a serial interface line (not
connected on-board)

There may be objections to install software which is not productive for the target
application. However, a design (SW or HW) which does not support test and
maintenance will retaliate by the time and effort wasted in future trouble-shooting.

Hardware
Environment

real-time*) /
on-line**)

Development phase
�TEST�GOALS	

Data sources

Host computer / PC
Office

no / no SW development
�ALGORITHMS��37�MODULES�
37�SEQUENCING	

Prototype HW
Office/Laboratory

yes / no Prototype tests / target
not yet available

�MEMORY���TIMING�PRE
INVESTIGATIONS	 Synthetic stimuli

Target System Real-time simulator
Laboratory yes / no HW/SW integration /

pass-off test
�INTERFACES��TIMING	

Bench engine
Flight engine

Real-time
Simulator

yes / yes System integration
�INTERFACES��DATA
CAPTURE	

Bench yes / yes System integration engine
�ENGINE�DATA�CAPTURE	

Aircraft yes / yes System integration A/C
�DATA�CAPTURE��ANY�OTHER

EFFECT��USER�HANDLING�
OTHER�SYSTEM
INTERACTIONS�����	

 *) real-time: the analysis of an engine run lasts as long as the corresponding
engine run

 **) on-line: simultaneous analysis during the engine run

&IGURE��� Types of Test Environment Used for Life Usage Monitoring System Testing

6!,)$!4)/.

Validation of the life usage monitoring system has the aim to demonstrate that the
product meets the expectations of the customer. One essential target is to find
specification errors (e.g. incorrect presumptions, insufficient description of the physical
behaviour of engine and components, unknown aspects of system handling or
deviations from assumed aircraft and engine operation). The behaviour of sensors under

15

operational conditions can also produce unexpected problems (e.g. noise, spikes and
drop-outs, sensor drift and total failure). To account for human errors in operating the
system, the validation tests should be performed within the productive environment
involving the personnel later on responsible the productive utilisation of the monitoring
system as also pointed out in [17].

A good means to perform monitoring system validation testing is to carry out flight
trials. For these tests it is very important to check the complete data transfer path
(sketched in Figure 1). It starts with the engine and aircraft signals (generated by
sensors), passes to the on-board processing system and to the internal storage media.
The data path includes then on-board displays (such as cockpit, maintenance data panel
or connected ground equipment) and a transfer medium to the ground station. The local
ground station itself with its periphery as well as data transfer to the remote logistic
support system should be scrutinised. But also further data transmissions to spare part
management systems, workshops and supporting industry should be checked for data
consistency. It should be noticed that most of the interfaces involved are bi -directional
and data transfer in both directions must be considered.

When performing flight trials it is very important to have quick access to the
simultaneously recorded flight data, because this seems the only way detected problems
can be completely investigated (e.g. by interviewing the pilots and operating crew,
checking hardware and sensors). Ideally, immediately after the flight the recordings of all
input data and the results of on-board data processing are available for being fed into a
reference implementation of the monitoring software at a locally available PC. Under
such conditions, detected problems can be quickly and easily reproduced and
investigated.

If serious problems occur (e.g. with internal interfaces, timing, data transfer), it is
advantageous, if the flight recorded data can be re-converted into the original format (as
input into the on-board processing equipment) and then fed into a separate prototype
box via a special test interface. With an emulator and continuous real time observation
of special diagnosis information, it is then possible to reproduce bugs occurred during
flight, and to analyse and fix them.

A critical issue for the correct function of any embedded system and also for an
on-board engine monitoring system is the timing of processor systems and software
during power-on or power-off. If different functions are involved, each function typically
performs various self tests, sometimes also including hardware related tests.

A careful design of interfaces, including timing analyses of start -up sequences, is
necessary to avoid interference between subsystems during the set-up phase.
Interactions between self-tests of connected processor systems tend to produce strange
and unpredictable results.

During the flight trials for ELCMP08 in 1991 a situation occurred, where the
update of the Data Acquisition Unit (DAU) failed in some rare occasions. The reason
was found to be a reset request sent to the engine monitoring processors shortly after
power up. This high priority request was accepted even during the self test of RAM
(Random Access Memory). A very small portion of RAM is used to store engine
configuration data and permanent accounts. As the reset request happened to arrive
exactly at the time when the RAM test was checking the cells carrying the engine
configuration information, a few storage locations were not properly restored and the
subsequent plausibility test of the configuration data reported an update error. If only

16

RAM working memory used by the lifing algorithms was affected, this memory was
initialised properly at engine start, thus hiding the undefined state of a few RAM cells
affected by the interrupted self test. Due to their low probability and the different timing
behaviour between prototype and production environment, such errors may remain
undetected during development and prototype testing.

Even if the malfunction shows up more frequently in the flight trial environment, it
may remain hidden for a long time due to the interaction with other system problems or
simply by the assumption of the test personnel "We might have done something wrong
in the procedure". What would you do, if you have got a brand new electronic equipment
with new software, you switch on power, press some buttons following a new procedure
you do not fully understand, and a message "Update Error" appears on the display at
some point in the procedure? Certainly, your first hypothesis would to assume that you
missed something in the procedure. You would decide to switch power off and then on
again and to repeat the procedure - and everything runs smoothly. But the explanation
was that the timing conditions were different in both attempts and the few RAM cells
spoiled by the bug in the memory test had a 5% probability to contain configuration data.
When the error message re-appeared 15 or 20 flights later, it was quite natural to
assume a handling mistake instead of a real error, which had the consequence for you
to fill out a lengthy problem report form.

 One general recommendation concluded from this error is to keep the error
reporting process as simple as possible and not to overburden the test personnel with
bureaucratic procedures, which might give rise to the retention of useful information.

02/#%$52%3

Software verification and validation require a number of procedures to be
followed. The most important are the software test plan, the software test description
and the software test report (for details refer to [16]).

The purpose of the software test plan is to describe the plans for qualification
testing of CSCIs and software systems. Encompassed are the description of the test
environment including test sites, the software, hardware and firmware items as well as
the personnel involved and the schedules for the test activities. The tests to be
performed are identified and traced back to the requirements they address.

The software test description serves to describe the test preparations, test cases
and test procedures. The preparations include providing specific hardware to be used,
switch settings, step-by-step start-up instructions, specific software and associated
storage media, software loading instructions, and any other pre-test personnel actions as
well as the procedures necessary to perform the test itself. The test cases include
pre-requisite conditions, test inputs, expected test results and criteria for evaluating the
obtained test results. Test procedures consist of operator inputs and actions, expected
results and evaluation criteria for each step, actions to follow in the event of a program
stop or indicated errors.

For life usage monitoring, most of the test cases require input profiles which
define particular engine operating conditions. The first tests are based the engine design
missions (defined as synthetic data profiles). As the algorithms need to cope with all
extreme operating conditions defined in the specification, it is necessary to construct a
number of specific test cases. Maximum values of spool speeds, temperatures,

17

pressures as well as maximum rates of change need to be simulated in a lot of
combinations which may adversely influence each other. Test cases are also required,
which simulate error conditions, in order to check the error response of the monitoring
system. Adequate error response is essential, as this may be the only way to provide
supporting information for trouble shooting under in-service operating conditions.
Additionally, we are faced with the fact that realistic recorded data are not available in
early stages of system development. The first realistic data available in a new project
stem from engine runs on test bed. The tested engines are normally prototypes with a lot
of differences to the final production engine. More realistic data are obtained from
engine flight trials which are still performed with prototypes. But also the flight trials do
not provide enough information about the later in-service handling. Such realistic data
are very important, since they reveal particular engine behaviour peculiarities that might
not be covered by the specifications. However, it is tacitly required that also those
unexpected conditions are correctly treated by the monitoring software. In this way, the
test cases are adapted step by step to the available information. The consequence for
testing is that the number of test cases increases and a lot of testing is repeated. In this
situation, automation of the test processes helps to reduce test effort and time.

The software test report provides a record of the qualification testing performed
with the software system. It contains an overview of the test results including overall
assessment, impact of test environment and recommended improvements, further the
detailed test results for each test describing problems encountered and deviations from
the test cases and procedures. A test log is provided with date, time and location of the
test, used hardware and software configurations as well as test activities, personnel and
witnesses. Again it safes cost and time if the test documentation is generated directly
from the test drivers.

A life usage monitoring system undergoes many modifications, not only during the
development phase but also under its entire life cycle. This calls for effective measures
to steer the modification process. Means foreseen by the development standards are
configuration control, problem reports and design changes.

The activities must cover every problem detected in the components of the
system. The items to be traced - including all CSCIs - are typically laid down in the
software development plan.

Problem reports give detailed descriptions of the problems detected. Design
changes contain a problem analysis and the suggested measures to solve the problem.
Both together serve as input to the corrective action system. The corrective action
system is a closed-loop system, ensuring that all detected problems are promptly
reported and entered into the system, action is initiated on them, resolution is achieved,
status is tracked, and records are maintained.

For every change or problem solution, it is also necessary to consider the effort to
proof its correctness. In order to reduce the test efforts, very often a number of changes
are combined to packages. This is in particular then advisable, if it is to be proven that
the overall behaviour of the system is not adversely effected by the modifications in
question.

The formal corrective action process should apply only to software products after
they are placed under project-level configuration control. Applying this process too early
in the development process would lead to an overloading of the corrective action system
and could also impede the necessary maturation process, which sometimes involves

18

frequent specification or design iterations not possible within a rigid framework of a
formal process.

Many changes to the monitoring system do not result from insufficient design but
from the inability to predict all aspects of the daily work under operational conditions.
Thus some changes are initiated by the customer. To get an impression which category
of problem may be detected by whom, we have sorted the problem reports and design
changes gathered during the most recent update of OLMOS-ELCMP development (see
[1, 8]) into a matrix shown in Figure 7.

&IGURE��� Problem Report and Design Change Matrix

19

#/.#,53)/.

Verification and validation are activities necessary to establish a proper working
aero engine life usage monitoring system. Verification can be characterised as the
means to show that the product meets all specification requirements, whereas validation
has the purpose to demonstrate that the customer’s expectations are satisfied. Most of
the tasks within these activities encompass testing. The tests include the accuracy proof
of the life usage algorithms, evidence for correct implementation of the functionality into
the target system as well as checks for consistent data transfer between all items
involved.

In a number of projects we dealt with over the last years, we came to the
conclusion that testing of a monitoring system sometimes serves to get to know the
operating environment which could not be specified detailed enough in the concept and
planning phases.

2%&%2%.#%3

[1] J. Broede
Engine Life Consumption Monitoring Program for RB199 Integrated in the
On-Board Life Monitoring System
AGARD Conference Proceedings No 448, Quebec, 1988

[2] K. Richter
The On-Board Monitoring System of the MTR 390 Engine
17th International Symposium AIMS, Bonn, 1993

[3] F. Hörl, K. Richter
Monitoring the EJ200 Engine
18th International Symposium AIMS, Stuttgart, 1995

[4] J. Broede, H. Pfoertner
Advanced Algorithm Design and Implementation in On-Board Microprocessor
Systems for Engine Life Usage Monitoring
15th International Symposium AIMS, Aachen, 1989

[5] G. Dhondt, W. Möhres
Modelling the Engine Temperature Distribution between Shut Down and Restart
for Life Usage Monitoring
16th International Symposium AIMS, München, 1991

[6] J. Broede
Design and Service Experience of Engine Life Usage Monitoring Systems
5th European Propulsion Forum, Pisa, 1995

[7] H. Pfoertner, C. Roß
Preparing Life Usage Monitoring for the Next Decade
18th International Symposium AIMS, Stuttgart, 1995

20

[8] J. Broede, H. Pfoertner
OLMOS in GAF MRCA Tornado - 10 Years of Experience with On-Board Life
Usage Monitoring
33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
Seattle, 1997

[9] ISO / IEC 9126
Information technology - Software product evaluation - Quality characteristics
and guidelines for their use
International Organisation for Standardisation, International Electrotechnical
Commission, 1991

[10] H.-L. Hausen, D. Welzel
Guides to Software Evaluation, Arbeitspapiere der GMD 746
Gesellschaft für Mathematik und Datenverarbeitung mbH, Sankt Augustin, 1993

[11] Software Productivity Consortium
Ada 95 Quality and Style: Guidelines for Professional Programmers
US Department of Defense, Ada Joint Program Office SPC-94093-CMC, 1995

[12] RTCA DO-178B
Software Considerations in Airborne Systems and Equipment Certification
RTCA Inc. SC-167, Washington DC, 1992

[13] Military Standard DoD-STD-2167A
Defense System Software Development, 1988

[14] MIL-STD-498
Software Development and Documentation
US Department of Defense, 1994

[15] MIL-STD-498 Application and Reference Guidebook
US Department of Defense, 1996

[16] Data Item Descriptions (DIDs) for MIL-STD-498
US Department of Defense, 1994

[17] R. Merrits, H. Tanner, M. Lopez-Estrada
Testing Military Software in the Near-Operational Environment
Professional Paper, Naval Air Warfare Center Aircraft Division,
Patuxent River, MD, 1995

	Abstract
	Introduction
	Requirements
	Steps of System Development
	Algorithm Accuracy
	Verification
	Validation
	Procedures
	Conclusion
	References
	AIMS98

